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Anisotropy in homogeneous rotating turbulence

JoséGaite
Instituto de Matema´ticas y Fı́sica Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain

~Received 20 June 2003; published 25 November 2003!

The effective stress tensor of a homogeneous turbulent rotating fluid is anisotropic. This leads us to consider
the most general axisymmetric four-rank ‘‘viscosity tensor’’ for a Newtonian fluid and the new terms in the
turbulent effective force on large scales that arise from it, in addition to the microscopic viscous force. Some
of these terms involve couplings to vorticity and others are angular momentum nonconserving~in the rotating
frame!. Furthermore, we explore the constraints on the response function and the two-point velocity correlation
due to axisymmetry. Finally, we compare our viscosity tensor with other four-rank tensors defined in current
approaches to nonrotating anisotropic turbulence.
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I. INTRODUCTION

The properties and applications of rotating fluids con
tute an important area of fluid mechanics@1#. In particular,
the anisotropy consequent to the rotation has been a
important subject. For example, we have the class
Proudman-Taylor theorem, which says that, in the limit
fast rotation, the flow is so strongly anisotropic that it ac
ally becomes two dimensional. Turbulence in the presenc
uniform rotation, which is called rotating turbulence, is
example of anisotropic turbulence and an area of active
search@1–4#.

From a theoretical point of view regarding symmetry, t
classical theory of fully developed turbulence assumes
maximal possible symmetry, namely, symmetry under tra
lations and rotations, so it applies to idealhomogeneous and
isotropic turbulence. However, in various situations such
high symmetry is not realistic and one must consider l
symmetric turbulent states. The next most symmetric sta
still homogeneous but the isotropy reduces to axisymme
that is, the full rotation group reduces to the group of ro
tions around a particular axis. The archetype of homo
neous turbulence with axisymmetry is rotating turbulen
~naturally, the symmetry axis is the rotation axis!.

It was shown in Ref.@5# that perturbation theory for the
randomly forced rotating Navier-Stokes equation genera
anisotropic effective forces, in particular, thenondissipative
force V3¹2u. This suggests that one should find the co
plete set of allowed force terms. In this regard, it is usefu
define the effective viscosity, which is a tensorial function
V ~reproducing the known perturbative results for isotro
turbulence asV→0). Beyond perturbation theory~or any
method of solution!, our intention here is to study from firs
principles the consequences of axisymmetry in rotating
bulence.

The possibility of anisotropy in the velocity correlatio
functions has been considered before in nonrotating flu
@6–12#. So, in these references, the anisotropy was attribu
to other causes: existence of a mean flow or anisotropic f
ing. In fact, in ahomogeneousfluid the existence of mean
flow effects, that is, the dependence of properties of the fl
on its mean velocity, would contradict Galilean invarianc
The flow can only depend on global kinematical features t
1063-651X/2003/68~5!/056310~12!/$20.00 68 0563
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involve accelerations, such as in a uniformly rotating fluid
homogeneous but anisotropic forcing will induce anisotro
in the velocity field~the axial case is studied in Ref.@9#!; but
the physical origin of this anisotropic forcing and, therefo
the extent of the scale range affected by it are not clear.
think that rotating turbulence is a more natural example
anisotropic turbulence and with more physical applicatio
Moreover, this type of anisotropic turbulence has distinct
features~as was pointed out in Ref.@5#! becauseV is an
axial vector. Indeed, the forceV3¹2u or other terms of the
same type would not be allowed if isotropy were broken
a polar vector as in Ref.@9#.

We remark that the characterization of the effective~or
eddy! viscosity as a four-rank tensor has already appeare
the literature. For example, in Ref.@7# the authors show tha
a multiscale method applied to the Navier-Stokes equa
linearized with respect to a weak large-scale flow precis
produces an effective viscosity tensor if the basic fluctuat
flow is not isotropic. However, as commented above, to
termine the form of this tensor, one needs an explicit mec
nism that breaks isotropy and preserves homogeneity. Ot
wise, the basic assumptions and, in particular, axisymme
are not justified.

On the other hand, sinceV is an axial vector, the effective
viscosity tensor in rotating turbulence has distinctive fe
tures: for example, it has a pair-antisymmetric piece~which
generates the above-mentioned force! @5#. In addition, it will
be shown here that a general treatment of the effective
cosity tensor in rotating turbulence requires new terms t
couple to the vorticity or that are angular momentum no
conserving~in the rotating frame! and, therefore, are forbid
den in anisotropic nonrotating turbulence.

We shall first review the fluid equations in the rotatin
frame and the conditions for turbulence; we emphasize
transition from small-scale isotropic turbulence to large-sc
anisotropic turbulence. Next, we introduce the viscosity
the standard manner@13# but without recourse to isotropy,
which is replaced by only axisymmetry. All the componen
of the resulting four-rank tensor are determined with gro
theory arguments@14#. From this tensor we obtain the add
tional anisotropic force terms. Once seen the axisymme
constraints on the viscosity tensor, we impose axisymme
©2003 The American Physical Society10-1
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on the response function or~two-point! velocity correlations.
In particular, the large-scale response function is related w
the viscosity tensor. Finally, we try to connect the viscos
tensor with other four-rank tensors introduced in some c
rent approaches to nonrotating anisotropic turbulence.

II. EQUATIONS OF MOTION IN A ROTATING FRAME
AND TURBULENCE

The hydrodynamical equations for a fluid with dens
field r(x,t), velocity fieldu(x,t), pressureP(x,t) in a frame
rotating with constant angular velocityV are

]r

]t
1“•~ru!50, ~1!

]u

]t
1~u•“ !u52

1

r
“P22V3u2V3~V3x!1f, ~2!

where f accounts for an additional acceleration due to fr
tion ~which vanishes if] iu50) and a homogeneous and is
tropic external forcing, usually random~or periodic as in
Ref. @7#!, which serves for keeping the total kinetic ener
constant.

We assume that the fluid is incompressible, with const
density, so the continuity equation becomes“•u50. So if
we definep5P/r every reference to the density disappea
and we have two equations for the two unknownsu andp. To
solve forp, it is useful to separate Eq.~2! into independent
longitudinal and transverse equations. Sinceu5uL1uT
~such that“3uL5“•uT50) and uL identically vanishes,
the longitudinal equation becomes just a constraint relatinp
with spatial derivatives ofu, namely,

p5
1

2
~V3x!22

1

¹2
@] i~uj] jui !12e i jkV j] iuk#. ~3!

Solving for p, the equation foru5uT is

]u

]t
1P@~u•“ !u#52P~2V3u!1f, ~4!

where the projection operatorP onto transverse~or solenoi-
dal! fields is given by

P512“

1

¹2
“. ~5!

In Eq. ~4!, if u is transverse so isf and vice versa. We cal
Eq. ~4! the transverse rotating fluid equation. If we substitu
for f an isotropic viscous force, it becomes the transve
rotating Navier-Stokes equation. Note that the transverse
tating fluid equation~4! is translation invariant~assuming
that f is homogeneous!, in contrast with Eq.~2!. Therefore,
its solutions are homogeneous velocity fields and, furth
more, one can make use of the Fourier transform.
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Homogeneous rotating turbulence

The homogeneous rotating turbulent state is defined b
velocity field with large fluctuations but such that the me
velocity is negligible in the rotating frame. Let us see how
characterize this state in terms of nondimensional parame
and how it is related with the homogeneous and isotro
turbulent state.

Since we have the rotation velocity as additional para
eter, we can define two nondimensional parameters, nam
the Reynolds and Rossby numbers. While the Reyno
number Re5UL/n measures the relative importance of t
nonlinear and viscosity terms in the Navier-Stokes equat
the Rossby number Ro5U/(LV) measures the relative im
portance of the nonlinear and Coriolis terms in the rotat
Navier-Stokes equation (U is a reference velocity or the
variation of the velocity over the lengthL that characterizes
the system size!. In principle, Ro@1 indicates that rotation
effects are negligible and, vice versa, Ro!1 indicates that
they are dominant. However, the latter condition, name
dominance of rotation effects over nonlinear and visco
~and even dynamic! effects leads to the situation in whic
only the linear Coriolis force is relevant, giving rise to e
treme two dimensionalization of the flow~as in the
Proudman-Taylor theorem! but without turbulence. It is nec
essary that thetwo numbers Ro and Re play a role in spec
fying the regime of interest, that is to say, the regime w
rotation effects (Ro@1) and turbulence (Re@1). Or one
may introduce the Ekman number Ek5n/(VL2) ~in addition
to Ro), which is the ratio of the Rossby number to the Re
nolds number and measures the relative importance of
viscosity and Coriolis terms@1#. Then one must demand E
!Ro in addition to Ro!1.

To clarify the preceding condition, let us consider releva
length scales. First, let us recall the role of the dissipat
scale. In ordinary homogeneous and isotropic turbulen
K41 theory@8# makes the dissipation rate per unit mass« the
basic quantity and introduces the dissipation scalel
5(n3/«)1/4. Using V instead ofn, we can form with« the
length scale,5(«/V3)1/2. If we begin with smallV ~for
fixed «) such that,@L, rotation effects must be negligibl
all over the fluid system of characteristic lengthL. Therefore,
the precise condition for neglectingV is V!(«/L2)1/3

~equivalent to,@L). Given that (L/l)4/35Re@1, the pa-
rameter («/L2)1/3/V5n/(VL2)(L/l)4/35Ek Re5Ro, so the
condition for neglectingV is just Ro@1. As V grows and,
therefore,, diminishes such that,,L, rotation effects be-
come appreciable. We then have one scale range with ro
ing turbulence, namely, between, and L, and another with
isotropic turbulence, namely, betweenl and ,. The latter
range holds as long asl,,, that is, V,A«/n. As , be-
comes smaller thanl, the rotation effects dominate over th
nonlinear effects and the flow becomes strongly two dim
sional.

The interesting values ofV are such that there are the tw
scale ranges, respectively, with isotropic turbulence on sm
scales and anisotropic turbulence on larger scales. Of cou
this happens whenl!,!L. Then the viscosity or correla
tion functions on scales betweenl and, are essentially iso-
0-2
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tropic whereas the effective viscosity or correlation functio
on scales between, andL are axisymmetric.

III. THE AXISYMMETRIC EFFECTIVE VISCOSITY
TENSOR

To introduce the viscosity tensor, it is convenient to fo
low the general reasoning@13# which starts by writing the
fluid equation in local conservative form as

r
]ui

]t
5

]P i j

]xj
, P i j 52ruiuj1Ti j , ~6!

and finds the deviatoric part of the stress tensor

Ti j 52P d i j 1s i j ~7!

due to internal relative motion~viscosity! from general prin-
ciples. The first principle is that the velocity gradient
small, which allows one to consider onlyfirst derivativesof
the velocity. Next, the viscous stress tensors i j is taken pro-
portional to the velocity gradient and, furthermore, its an
symmetric components~vorticity! are excluded, so that th
stress is proportional to the rate of strainumn5] (mun)
5(]un /]xm1]um /]xn)/2 ~this characterizesNewtonian flu-
ids! @15#. The following crucial assumption isisotropy,
which leads to the existence of only two proportionality co
stants~shear and bulk viscosities!. As we cannot make this
assumption here, we are left with just the proportiona
relation

s i j 5h i jmnumn , ~8!

such as in the analogous relation in the theory of elasti
that expresses that the stress is proportional to the strain@16#.
Therefore, the symmetry properties of the tensorh i jmn ,
which we call the ‘‘viscosity tensor,’’ are similar to the one
of the elastic modulus tensor, namely, symmetry under
change of indices within the first and second pairs of indi
and, in addition, symmetry under exchange of the first a
second pairs of indices~pair symmetry!. However, we shall
further allow forpair antisymmetry; namely, we writeh i jmn
as a sum of a pair-symmetric~S! and a pair-antisymmetric
~A! part @5#:

h i jmn5 1
2 ~h i jmn1hmni j!1 1

2 ~h i jmn2hmni j![h i jmn
S 1h i jmn

A .
~9!

So, generically, the viscosity tensor has 36 independent c
ponents, of which 21 belong to the pair-symmetric parth i jmn

S

and 15 belong to the pair-antisymmetric parth i jmn
A .

The axial symmetry of the equations of motion reduc
the number of independent components of bothh i jmn

S and
h i jmn

A . The 21 components of the generic pair-symme
tensor can be divided into two sets with 15 and 6 com
nents, respectively, the former corresponding to the tot
symmetric tensor. The respective components are c
structed in the Appendix as linear representations and ca
15S and 6S. Further imposing axisymmetry, the pai
symmetric tensor can be constructed fromV i andd i j as
05631
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h i jmn
S 5a1~d i j dmn1d imd jn1d ind jm!1a2~V iV jdmn

1VmVnd i j 1V iVmd jn1V jVmd in1V iVnd jm

1V jVnd im!1a3V iV jVmVn1a4d i j dmn

1a5~V iV jdmn1VmVnd i j !. ~10!

There are five independent components, to which we att
scalarsa1 , . . . ,a5 ~which can depend onV2). In compari-
son with the form given in Ref.@5#, this expression has bee
arranged so that the three first tensors~with coefficients
a1 ,a2 ,a3) are totally symmetric in their indices.

The generic pair-antisymmetric tensor has 15 com
nents, constructed in the Appendix as the linear represe
tion 15S8. The pair-antisymmetric tensor with axisymmet
needs, in addition toV i and d i j , the totally antisymmetric
tensore i jk and is

h i jmn
A 5b1Vq~eqimd jn1eqind jm1eq jmd in1eq jnd im!

1b2Vq~eqimV jVn1eqinV jVm1eq jmV iVn

1eq jnV iVm!1b3~V iV jdmn2VmVnd i j !. ~11!

We observe that the axisymmmetry has reduced the n
ber of independent components from 21 to 5 for the pa
symmetric part and from 15 to 3 for the pair-antisymmet
part. This reduction can be explained by considering the
duction of linear tensor representations under rotations~see
the Appendix and Ref.@10#!. The reduction under rotations i
performed by extracting traces, which are rotation invari
but not linear invariant. There exists a canonical procedu
for doing this trace extraction@14# but we can clarify the
procedure by noting that the properties of the expression
Eq. ~10! or Eq. ~11! under rotations are determined only b
the vectorV i (d i j and e i jk are rotation invariant!. For ex-
ample, the terms with coefficientsa1 and a4 clearly corre-
spond to scalars (J50), the only terms allowed by isotropy
Furthermore, an expression with the tensor product ofn V’s
corresponds to the representationJ5n, usually, with an ad-
mixture of lower J representations. Therefore, each coe
cient corresponds to a definiteJ representation, but, in orde
to obtain the correct tensorial expression of each represe
tion, we need to remove the lowerJ representations by ex
tracting traces. This induces a linear redefinition of the co
ficients within each linear representation.

Finally, we remark that the terms in Eq.~11! with coeffi-
cientsb1 andb2 would not be allowed if isotropy were bro
ken by a polar vector, because the respective terms woul
odd under parity@in general, the parity of the representatio
J associated with a polar vector is (2)J].

A. Traceless components and incompressibility constraint

The preceding tensorial expressions for the viscosity h
a part that couples to the velocity divergenceuii . Moreover,
they give rise to an isotropic part of the viscous stress ten
s i j ~that is, proportional tod i j ). Therefore, the viscosity ten
sors must be further decomposed into traceless and t
parts. For incompressible flow we only need the tracel
0-3
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JOSÉGAITE PHYSICAL REVIEW E 68, 056310 ~2003!
components such thath i jkk5hkkmn50. They can be ex-
tracted by subtracting traces from eitherh i jmn

S or h i jmn
A . In

the general case, that is, with no axial~or any other! symme-
try, those tracelessness conditions remove 61621511
components~the conditionhkkll50 appears twice!, leaving
25 components. To be more precise, the conditionsh i jkk

S

50 remove six components ofh i jmn
S ~with J52,0, corre-

sponding to6S) and the conditionsh i jkk
A 50 remove the five

components ofh i jmn
A corresponding toJ52.

Indeed, a straightforward calculation yields

h i jmn
S 2 1

3 h i jkk
S dmn2

1
3 hkkmn

S d i j 1
1
9 hkkll

S d i j dmn

5a1~d imd jn1d ind jm2 2
3 d i j dmn!1a2@V iVmd jn

1V jVmd in1V iVnd jm1V jVnd im2 4
3 ~V iV jdmn

1VmVnd i j !1 4
9 V2d i j dmn#1a3@V iV jVmVn

2 1
3 V2~V iV jdmn1VmVnd i j !1 1

9 V4d i j dmn#,

~12!

h i jmn
A 2 1

3 h i jkk
A dmn2

1
3 hkkmn

A d i j

5b1Vq~eqimd jn1eqind jm1eq jmd in1eq jnd im!

1b2Vq~eqimV jVn1eqinV jVm1eq jmV iVn

1eq jnV iVm!. ~13!

The number of coefficients has been reduced to three
h i jmn

S , corresponding to theJ54,2,0 representations, and
two for h i jmn

A , corresponding toJ53,1. It is natural that
they together constitute the Clebsh-Gordan decompositio
the tensor product of twoJ52 representations~with dimen-
sion 535525) @14#.

There is another set of tracelessness conditions, nam
h i jm j50, but there is no physical reason to impose the
However, note that the six conditionsh i jm j

S 50 remove the
J52,0 representations, just leavingJ54, while the three
conditions h i jm j

A 50 remove theJ51 representation, jus
leavingJ53. Therefore, this last set of tracelessness con
tions would select the highestJ representations, correspon
ing to the coefficientsa3 andb2.

B. Viscosity tensors with antisymmetric pairs

Two crucial assumptions in the reasoning at the
ginnning of Sec. III are that the viscous stress tensor is s
metric and that it does not depend on the vorticity@the vor-
ticity tensor isv i j 5] [ iuj ]5(] iuj2] jui)/2]. They lead to a
viscosity tensor with symmetry under exchange of indic
within the first and second pairs of indices~symmetry by
pairs!. Those two assumptions are commonly accepted s
they are based on basic physical principles: on the one h
the stress tensor can always be chosen symmetric becau
angular momentum conservation; on the other hand, a
form rotation~leading to a constant vorticity! cannot induce
stresses, so a dependence of the stress tensor on vortic
forbidden. However, both principles, namely, angular m
mentum conservation and absence of stresses in unifo
05631
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rotating fluid, fail in a rotating frame. Therefore, we are a
lowed to consider viscosity tensors with antisymmetric pa
of indices. We have three types:~i! tensorsx i jmn with the
first pair symmetric and the second antisymmetric, wh
account for an angular momentum conserving coupling
vorticity, ~ii ! the symmetric typej i jmn , that is, tensors with
the first pair antisymmetric and the second symmetric, wh
account for an angular momentum nonconserving coup
to strain rate, and~iii ! tensorsz i jmn with both pairs antisym-
metric, which account for an angular momentum nonco
serving coupling to vorticity.

The most general tensor with the first pair symmetric a
the second antisymmetric has 18 components~see the Ap-
pendix!. Its axisymmetric form is

x i jmn5~c1d i j 1c2V iV j !e lmnV l1c3~V iVmd jn1V jVmd in

2V iVnd jm2V jVnd im!1c4~e imnV j1e jmnV i !.

~14!

The constantsc1 ,c3 ,c2 correspond toJ51,2,3, respectively,
forming the linear representation15SA, whereasc4 corre-
sponds toJ51 and 3SA. Imposing that the tensor be trace
less in its first two indices, that is,x i imn50, relates the co-
efficientsc1 and c2 ~the tensor is automatically traceless
the second pair of indices!. Therefore, the traceless tens
contains theJ51,2,3 representations, corresponding to t
Clebsh-Gordan decomposition of the tensor product of
J52 andJ51 representations.

There is an analogous axisymmetric structure for the sy
metric typej i jmn , involving 15AS and 3AS, and with coef-
ficientsc18 , . . . ,c48 .

Finally, the tensorz i jmn with both pairs antisymmetric ha
nine components, which the axisymmetry reduces to

z i jmn5d1~d imd jn2d ind jm!1d2~V iVmd jn2V jVmd in

2V iVnd jm1V jVnd im!1d3~e imnV j2e jmnV i !.

~15!

The constantsd1 ,d2 correspond toJ50,2, respectively,
forming the representation6A ~which is pair symmetric!,
whereasd3 corresponds toJ51 and 3A ~which is pair anti-
symmetric: even though it may not seem obvious,e imnV j
2e jmnV i52emi jVn1eni jVm). The tensor defined by Eq
~15! is trivially traceless in both pairs of indices and corr
sponds to the Clebsh-Gordan decomposition of the ten
product of twoJ51 representations.

C. Effective forces associated with the viscosity tensor

The total viscosity tensort5h1x1j1z is defined by

s i j 5t i jmn]mun . ~16!

The force derived from this stress tensor is

f i5]s i j /]xj5t i jmn] jmun . ~17!
0-4
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The expression that results by substituting the full axisy
metric expression oft i jmn is fairly complicated: suppressin
gradient terms, we obtain

f5~a12d1!¹2u2b1~V3¹2u!2b2~V•“ !2~V3u!

2~b21c28!~V•“ !~V3“ !~V•u!1~b21c2!V~V•“ !

3~V•v!1~c41c481d3!~V•“ !v1~a22c31c382d2!

3V¹2~V•u!1~a21c32c382d2!~V•“ !2u

1a3V ~V•“ !2~V•u!. ~18!

Several remarks are in order. Note that the fifth and si
terms of the force involve the vorticityv5“3u and are
proportional to an odd power ofV. The terms preceding
them are also proportional to an odd power ofV, except the
first one, which is isotropic. The remaining three anisotro
terms, which neither involve the vorticity nor any vect
product, are equivalent to the anisotropic force written
Ref. @9#. If we had considered only the tensorhS to derive
the force, we would have obtained precisely these th
terms but the first couple of them would have had the sa
coefficient a2. As we use the complete tensort we have
instead that some coefficients are redundant: inspecting
~18!, we see that there are two redundant coefficients am
c4 ,c48 ,d3, two redundant coefficients amonga2 ,c3 ,c38 ,d2,
and one redundant coefficient amonga1 ,d1.

After taking into account that“•u50 and suppressing
gradient terms, only remain the coefficients of the part ot
that is traceless in the first and second pair of indices. G
dient terms are longitudinal and the physical force must
transverse~solenoidal!; but, after removing these terms, th
force is still nontransverse and must be projected with
nonlocal operatorP of Eq. ~5!. This operation brings back
two suppressed gradient terms, namely,“(V•v)50 and
“@(V•“)(V•u)#, in addition to producing nonlocal grad
ent terms.

Finally, we remark that all the terms in Eq.~18! coming
from odd-J components oft, that is, the ones with odd pow
ers ofV ~with coefficientsb1 , b2 , c2 , c28 , c4 , c48 , andd3),
would not be allowed if isotropy were broken by a pol
vector.

D. Dissipation

The dissipated power is

2E d3xu•f52E d3xui] js i j 5E d3x] juis i j

5E d3xui j h i jmnumn1E d3xui j x i jmnvmn

2E d3xv i j j i jmnumn2E d3xv i j z i jmnvmn ,

~19!
05631
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where we have assumed that the velocity vanishes on
boundary to remove the surface integrals, that is, we h
assumed that there is no work made by external sources

As remarked in Ref.@5#, hA does not lead to dissipation
neither doeszA. Moreover, if x i jmn5jmni j , the respective
terms cancel in Eq.~19!. All these nondissipative compo
nents oft do not properly belong to theviscosity tensor,
although they give rise to forces with dynamical effect. O
the other hand, since the dissipation cannot be negative
can deduce some positivity conditions on the proper coe
cients of the viscosity tensor:a1.0, 2d1.0, etc.

IV. AXISYMMETRIC FORM OF THE RESPONSE
FUNCTION AND VELOCITY CORRELATIONS

It is useful to study the symmetry constraints on the
sponse function and velocity correlations. Here we determ
the most general axisymmetric forms of these quantities
the small-wave-number limit~corresponding to large-scal
features!. The theory of axisymmetric tensors has been
subject of previous analyses of anisotropic turbulence;
particular, it has been treated in papers by Chandrasekha@6#
and by Aradet al. @10#. The former uses the old formalism o
invariant theory whereas the latter uses the theory of gr
representations. Unfortunately, both consider only the ap
cation to correlation functions in real space, while we a
interested here in correlation functions in Fourier spa
~spectral functions!. Therefore, the theory of axisymmetri
tensors as is developed in those references must be ad
to Fourier space. Actually, the spectral two-point veloc
correlation function in rotating turbulence has already be
studied by Cambon and Jacquin@2# and we shall use thei
results.

A. Axisymmetric form of rank-two tensors

We consider a second-rank tensor that depends on
wave vectork ~since we use Fourier space!, in addition to the
angular velocityV. The general form of such a tensor as
linear combination of the tensorial productskikj , V iV j ,
kiV j , V ikj and the unit tensord i j is

Ti j ~k!5Akikj1BV iV j1CkiV j1C8V ikj1Ed i j ,
~20!

where A,B,C,C8,E are arbitrary functions ofk, V, and
k•V. However, a more general expression results upon
troducing the unit antisymmetric tensor or, equivalently, t
vectorn5k3V ~assuming thatk andV are not parallel! and
the corresponding tensor products:

Ti j ~k!5Akikj1CkiV j1Dkinj1C8V ikj1BV iV j1FV inj

1D8nikj1F8niV j1Gninj . ~21!

This expression with nine coefficients is the most gene
one, because any vector~to be included in a tensor produc!
can be expressed as a linear combination ofk, V, andn.

We remark that expression~20! corresponds to the ordi
nary quadratic form of Ref.@6#, where the terms with the uni
antisymmetric tensor are named ‘‘skew’’ forms. This nam
0-5
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refers to its reflection~or parity! character: if the two vectors
employed in the tensor products of the ordinary quadr
form are polar, this form is parity invariant~even parity!,
whereas the skew forms change sign under reflections~odd
parity! since the vector product is axial. In our case,
begin with a polar vectork and anaxial vectorV, so their
vector productn is polar. Hence, the terms of Eq.~21! that
change sign under reflections are the ones with only oneV.

Instead of the basis formed byk, V, and n, it may be
more convenient to use an orthonormal basis. Any coupl
linearly independent vectors determine an orthonormal ba
in particular, the two vectorsk andV lead to the one given
by k/k, e(1)5k3V/uk3Vu, ande(2)5k3e(1)/uk3e(1)u @2#.
Note that the vectorV is axial, soe(1) is polar bute(2) is
axial. Interchanging the role ofV andk, we get a different
orthonormal basis, with the vectore(1) in common: e3

5V/V, e15k3V/uk3Vu5e(1), and e25V3e1/uV3e1u.
This basis~which we denote by superindices without pare
theses! is more adequate. Note that bothe1 ande2 are polar.

Any rank-two tensor can be expressed in the latter b
as

Ti j 5T̃pqei
pej

q . ~22!

There are three pieces inTi j that are independent under ro
tations: the trace, the antisymmetric part, and the trace
symmetric part. This is the Clebsch-Gordan decomposi
of the vector tensor product into the irreducible represen
tions J50, J51, andJ52 of the rotation group. However
to classify the behavior of the components of the seco
rank tensor under rotations aroundV, that is, under the two-
dimensional rotation subgroup O~2! of the full rotation group
O~3!, it is best to use the given basis~componentsT̃pq). The
irreducible one-dimensional representations of O~2! are com-
plex, labeled by an integerM (2J<M<J). The real irre-
ducible representations are labeled byuM u and are two di-
mensional~except the scalarM50 representation! @14#. We
have thate3 is a scalar, and$e1,e2% form the realuM u51
representation. Consequently,T̃33 is the scalarM50 repre-
sentation,T̃13,T̃23,T̃31,T̃32 belong to twouM u51 represen-
tations, and the remaining components in the 232 block
matrix can be subdivided into its trace (M50), its antisym-
metric part (M50), and its traceless symmetric pa
(uM u52). Furthermore, it is not difficult to ascribe eachM
representation to a definiteJ representation.

B. Axisymmetric form of the response function

The response function is defined by

Gi j ~k,v!5
d^ui~k,v!&
d f j~k,v!

U
f50

~23!

~introducing a nonrandom part in the external forcingf). So
we can write, at linear order inf,

^ui~k,v!&5Gi j ~k,v! f j~k,v!. ~24!

Conversely,
05631
ic

of
is,

-

is

ss
n
-

-

Gi j
21~k,v!^uj~k,v!&5 f i~k,v!, ~25!

which tells us, on account of Eq.~17!, that the quadratic term
in the expansion ofGi j

21(k,0) in powers ofk is related with
the viscosity tensor. To be precise, we have that

gi jmnª2
1

2

]2Gi j
21

]km]kn
U

k50

5
1

2
~t im jn1t in jm!, ~26!

defining what we call the~four-rank! response tensor. Thi
tensor has symmetry in the pairmn, so it has 54 independen
components, whilet ~in the generic case! has 81 compo-
nents. Indeed, the 27 components of the tensor1

2 (t im jn
2t in jm) do not contribute to the response function.

1. Mapping the viscosity tensor to the response tensor

We can take in Eq.~26! h,x,j or z for t. On the other
hand, gi jmn can be decomposed intoi j -symmetric and
i j -antisymmetric parts, corresponding to the respective p
of the response matrix. Therefore,gi jmn has 636536 com-
ponents with symmetry in both pairs~belonging to theS
representation! and 336518 components with antisymme
try in the first pair and symmetry in the second pair~belong-
ing to theAS representation!.

Let us first analyze the components ofg coming
from hS. We note thatgi jmn5(h im jn

S 1h in jm
S )/25(h jnim

S

1h jmin
S )/25gjimn . Furthermore, this tensor is pa

symmetric: gmni j5(hmin j
S 1hm jni

S )/25(h im jn
S 1h jmin

S )/2
5(h im jn

S 1h in jm
S )/25gi jmn . So the 21 pair-symmetric com

ponents ofhS ~representations15S and 6S) are transformed
by Eq. ~26! into the 21 pair-symmetric components ofg; in
particular, the totally symmetric representation15S of hS is
left invariant. Given that we can substitutehS by zS in the
preceding equations, we conclude that the six pair-symme
components ofzS (6A) are transformed by Eq.~26! into six
pair-symmetric components ofg ~linear combinations of15S
and 6S).

We also note that if we takex for t in Eq. ~26! and
symmetrize ini j , the tensorgi jmn5 1

4 (x im jn1x in jm1x jmin
1x jnim) is pair antisymmetric, owing to the symmetry ofx.
An analogous property is fulfilled by the tensorgi jmn con-
structed in the same way fromj. So the 15 components ofx
from 15SA or the 15 components ofj from 15AS are trans-
formed by Eq.~26! into the 15 pair-antisymmetric compo
nents ofg ~representation15S8). On the other hand, it can b
proved thatx or j belonging to representations3SAor 3AS,
respectively, yield vanishingg ~they contribute instead to
t im jn2t in jm).

As regards thei j -antisymmetric part ofgi jmn , note that
gi jmn5(h im jn

A 1h in jm
A )/25(2h jnim

A 2h jmin
A )/252gjimn . So

the 15 components ofhA ~representation15S8) are trans-
formed by Eq.~26! into 15 components ofgi jmn with anti-
symmetry ini j (15AS). Given that we can substitutehA by
zA in the preceding equations, the remaining three com
nents ofzA (3A) are transformed into three components
gi jmn forming the representation3AS. Finally, we also have
the mapping SA→AS given by gi jmn5 1

4 (x im jn1x in jm
2x jmin2x jnim) and a similar mappingAS→AS.
0-6
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2. Axisymmetric form of the response tensor

The preceding mapping has been established with
generality, without considering any particular spatial symm
try. If we take axisymmetry into account, Eq.~26! provides
the linear relations between the coefficients in the axisy
metric form ofgi jmn and the coefficients in the axisymmetr
forms ofh, x, j or z. The 54 components ofgi jmn belong to
the S and AS representations, therefore,gi jmn has 814
512 coefficients: the axisymmetric form of the compone
gi jmn with symmetry in the first pair is like the forms ofh in
Eqs.~10! and ~11!, with other coefficients, saya1 , . . . ,a5 ,
b1 ,b2 ,b3; the axisymmetric form of the componentsgi jmn
with antisymmetry in the first pair is like the form ofj, with
other coefficients, sayg1 , . . . ,g4.

The above-mentioned coefficients in the response te
can also be obtained by expanding in powers ofk the axi-
symmetric expression ofGi j

21 ~21!. Considering that the uni
antisymmetric tensor does not appear in the tensors with
efficients a1 , . . . ,a5 , b3 , g3, the corresponding part o
Gi j

21 is given just by expression~20!. Then the coefficients
a1 , . . . ,a5 , b3 , g3 must arise by expandingA,B,C,C8,E
in powers ofk such that the total expression is of seco
degree in k. In particular, B5B1k21B2(k•V)2 and E
5E1k21E2(k•V)2, while A is a constant and the coefficien
functions of the terms that are of first degree ink, namely,
C,C8, can only be expanded up to the first order~propor-
tional to k•V). Therefore, this expansion just doubles t
coefficients ofV iV j and d i j , producing seven coefficient
altogether. We can divide them between the six coefficie
arising from the symmetricG( i j )

21 (C5C8) and the one cor-
responding to the antisymmetricG[ i j ]

21 , namely,C2C8.
The part ofGi j

21 that includes the unit antisymmetric ten
sor, with coefficientsD,D8,F,F8, andG in Eq. ~21!, corre-
sponds tob1 ,b2 ,g1 ,g2, andg4. They can be divided into
b1 ,b2 for the symmetricG( i j )

21 and g1 ,g2, and g4 for the
antisymmetricG[ i j ]

21 .

3. Higher-rank axisymmetric response tensors

An expansion ofGi j
21 in powers ofk to orders higher than

the quadratic order yields response tensors similar togi jmn in
Eq. ~26! but of higher rank. Given thatGi j

21 must be parity
symmetric, only even powers ofk can appear. For example
the next higher-rank response tensorgi jmnpq is symmetric in
the last four indices and, therefore, has 93155135 compo-
nents, but this number is reduced by the axisymmetry.
following higher-rank response tensors are progressiv
more complex, of course.

C. Axisymmetric form of the two-point velocity correlation

Let us introduce the spectral two-point velocity corre
tion

^ui~k,v! uj~k8,v8!&5~2p!4Ui j ~v,k!d~v1v8!d3~k1k8!.
~27!

We have thatUi j (v,k)5Uj i (2v,2k). Furthermore, trans
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versality implies thatkiUi j 5kiUj i 50. So, in the isotropic
case, the spectral two-point velocity correlation is given
terms of only one function:

Ui j ~v,k!5Pi j ~k!U~v,k!. ~28!

Taking into account that equal-time correlations are m
useful, let us define

Ui j ~k!5E dv

2p
Ui j ~v,k! ~29!

~assuming that the integral is convergent!, so that

^ui~k,t !uj~k8,t !&5~2p!3Ui j ~k!d3~k1k8!. ~30!

As demonstrated in Sec. IV A, the general axisymme
rank-two tensor has nine independent coefficient functio
but the transversality conditions reduce their number. T
number of independent conditions is five, so just four co
ficient functions remain independent, namely, the ones c
responding to the tensor products of the transverse vec
e(1) ande(2). It is convenient to use the basis correspond
to circular polarizationsN5e(1)2 ie(2), N* 5e(1)1 ie(2), so
that the resulting tensor can be written as@2#

Ui j ~k!5e~k!Pi j 1Re@z~k!NiNj #1 ih~k!e i j l

kl

k2
. ~31!

The quantitiese(k) and h(k) are the energy and helicity
spectrum, andz(k) is a ‘‘complex deviator.’’ They all are
even functions ofk. The preceding form is equivalent to th
form with the productsei

(1)ej
(2) , on account thatNiNj

5ei
(1)ej

(1)2ei
(2)ej

(2)2 i (ei
(1)ej

(2)1ei
(2)ej

(1)), Pi j 5ei
(1)ej

(1)

1ei
(2)ej

(2) , ande i j l kl /k5ei
(1)ej

(2)2ei
(2)ej

(1) .
Velocity correlations for more than two points lend them

selves to be expressed in similar though more complica
ways.

V. CONNECTION WITH SOME APPROACHES TO
ANISOTROPIC TURBULENCE

We have already mentioned that fourth-rank tensors a
ciated with anisotropic turbulence~but without rotation! have
been studied before; for example, in Ref.@7#. More recently,
in Ref. @11# one fourth-rank tensor for a flow with a consta
strain rate has been defined. Another fourth-rank tenso
defined in Ref.@12# in connection with the linearization of a
closure equation in the presence of weak anisotropy. We n
explore connections between our anisotropic viscosity ten
and those tensors.

The fourth-rank tensorCi jmn(k) of Ref. @11# expresses
proportionality between the contribution to the correlati
Ui j (k) @defined in Eq.~29!# from anisotropy and the constan
strain rate producing the anisotropy:

dUi j ~k!5Ci jmn~k!umn , ~32!

where the strain rateumn is constant. The Reynolds stres
tensor
0-7
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^ui~x,t !uj~x,t !&5E d3k

~2p!3
Ui j ~k!5Ui j ~33!

has a deviatoric part that, according to Eq.~32!, is propor-
tional to the strain rate, the proportionality constant being
integral of the tensorCi jmn(k):

dUi j 5E d3k

~2p!3
dUi j ~k!5E d3k

~2p!3
Ci jmn~k!umn .

~34!

It is also possible to assume that the Reynolds stress te
~33! and the strain rate have some mild dependence on
spatial coordinatex. The corresponding generalization of E
~34! is a phenomenological~mean-field! closure relation that
can be justified with a multiscale method applied to t
Navier-Stokes equation linearized with respect to
x-dependent~large-scale! mean flow @7#. Comparing this
mean-field relation with Eq.~8!, we deduce a relation be
tween our viscosity tensorh i jmn andCi jmn(k), namely,

h i jmn5rE d3k

~2p!3
Ci jmn~k!. ~35!

We must note, however, that the form ofCi jmn(k) in terms of
projectorsPi j (k) proposed in Ref.@11# leads to the usua
isotropic h i jmn . Indeed, one needs an additional quant
such as the vectorV, to define an anisotropic viscosity.

More sophisticated closure schemes involve relations
tween the three and two-point velocity correlation functio
The Navier-Stokes equation leads to an equation involv
these two types of correlations, first derived by von Ka´rmán
and Howarth assuming isotropy. Chandrasekhar@6# devel-
oped a theory of axisymmetric tensors to generalize
equation to axisymmetric turbulence. As remarked by Fri
@8#, it is easy to derive a fully anisotropic version of th
Kármán-Howarth equation, which he calls the Ka´rmán-
Howarth-Monin equation. In Ref.@12#, the Fourier transform
of this equation is used as the basis of a closure sch
related with the direct interaction approximation, in whi
the functionUi j (k) satisfies~in stationary conditions! a non-
linear equation:

Dmn~k![I mn~k!2nk2Umn~k!, ~36!

where I mn is an integral operator quadratic inUi j . In addi-
tion, we have introduced an external random forcing, abs
in Ref. @12#, which is Gaussianandwhite in time and, hence
is represented by the spectral two-point correlationDmn(k)
~see Ref.@8# for a general description of closure equation!.
If the molecular viscosityn vanishes, the external forcing i
not necessary, as in Ref.@12#. However, the introduction o
Dmn allows us to substitute the four-rank tensor defined
Ref. @12# by a four-rank tensor more useful to connect w
the viscosity tensor.

If the forcing is isotropic, we expect that Eq.~36! has
isotropic solutions. One can then linearize this equat
around an isotropic solution, namely,
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dDmn~q!5
dDmn~q!

dUi j ~k!
U
Ui j 5ePi j

dUi j ~k!, ~37!

wheredDmn represents an anisotropic perturbation of an i
tropic forcing such thatDmn5DPmn @note that isotropy im-
plies thatUi j 5ePi j , according to Eq.~31!#. The solution of
this linear equation is obtained by inverting the matrix
pairs of indices, deriving a sort of tensorial response fu
tion,

Gi jmn~k,q!5
dUi j ~k!

dDmn~q!
U

Dmn5DPmn

, ~38!

which measures the response to the anisotropic perturba
Considering the role of the molecular kinematic viscosityn
in Eq. ~36!, we can tentatively define a kinematic viscosi
tensor as

n i jmn52
1

2

]2

]kl]kl
E d3qGi jmn

21 ~k,q!uk50 . ~39!

This relation between a tensorial viscosity and a respo
tensor is an alternative to Eq.~26!, valid when we replace the
original Navier-Stokes equation with the closure Eq.~36!.
However, the actual computation ofn i jmn necessarily leads
to an isotropic tensor, since there is nothing in Eq.~38! ca-
pable of breaking rotation invariance.

VI. CONCLUSIONS

We have applied symmetry principles to homogeneo
turbulence subjected to uniform rotation, focusing on t
four-rank tensor defining the linear relation between
stress tensor and the velocity derivatives, which we call
viscosity tensor. The most general tensor comprises
parts.

~a! A tensor hS symmetric by pairs of indices and pa
symmetric, accounting for the usual proportionality relati
between the~anisotropic! stress and the strain rate.

~b! A tensorhA symmetric by pairs and pair antisymme
ric embodying a new relation between the stress and
strain rate, typical of rotating fluids, since it does not lead
dissipation.

~c! A tensorx symmetric in the first pair of indices an
antisymmetric in the second, which accounts for a stress
sor coupling to vorticity.

~d! A tensor j antisymmetric in the first pair of indice
and symmetric in the second, which accounts for the a
symmetric part of the stress tensor~angular momentum non
conserving! that couples to the strain rate.

~e! A tensor z antisymmetric in both pairs of indice
which accounts for the antisymmetric part of the stress ten
that couples to the vorticity. This tensor can be further d
composed into pair-symmetric and pair-antisymmetric pa
like h.

Group theory helps us to find the linearly independe
components~as representations of the linear group! in each
part. Every part adopts a particular axisymmetric for
which can be deduced from the examination of the deco
0-8
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position of the linearly independent components under ro
tions.

This variety of components of the viscosity tensor is
flected in the various effective forces that arise from the
Some of these are longitudinal, that is, they are the grad
of a potential, and therefore do not contribute to the tra
verse rotating fluid equation. However, they arise from
turbulent state and contribute to the equation that determ
the equilibrium state, so they may have practical relevan
Already at first order inV, we have the potentialV•v,
which reminds us of the spin-orbit coupling of atomic phy
ics. At higher orders inV, we find more complicated poten
tials.

Although the most general four-rank viscosity tensor
cludes terms that lead to the stress coupling to vorticity
not conserving angular momentum, one may wonder if th
are really necessary. If we take the criterion of having
most general axisymmetrictransverseforce, we could re-
move redundant coefficients in Eq.~18!: this equation has
nine terms but includes the 14 coefficients of the trace
viscosity tensor. For example, we could remove all the co
ficients belonging toz, and the couplec3 ,c4 ~belonging to
x) or the couplec38 ,c48 ~belonging toj), but notc2 or c28 .
Hence, we conclude that the only part of the viscosity ten
that can be neglected isz, but x andj must be present. So
we still have that the stress couples to vorticity and does
conserve angular momentum~in the rotating frame!.

Finally, in our analysis of the four-rank tensors defined
some approaches to nonrotating anisotropic turbulence
have seen there are similarities with our viscosity tenso
their definition and, therefore, that the respective definitio
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can be connected. However, the lack of specification o
quantity that breaks rotation invariance precludes that
actual values of the tensors corresponding to nonrotating
bulence can be anisotropic. It is possible, nevertheless
provide such a symmetry-breaking quantity: for example,
anisotropic noise spectral correlationDmn . In particular, one
can introduce an axisymmetricDmn by postulating the pres
ence of a global vector~of unknown origin!, as in the per-
turbative approach of Ref.@9#. If this symmetry-breaking
vector were axial instead of polar, the four-rank tensorn i jmn
of Sec. V should have the same form that ourh i jmn .
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APPENDIX: RESOLUTION OF THE GENERAL
FOUR-RANK TENSOR BY THE SYMMETRY OF PAIRS

OF INDICES

Let us work out first the resolution of the general fou
rank tensorTi jmn into a sum of tensors of definite symmet
type given by standard Young tableaux. Young tableaux
dicate certain symmetry operations performed on the ind
@14#. We can consider the general four-rank tensor as a
sorial product of four vectors and, therefore, write its res
lution as the Clebsch-Gordan decomposition for the lin
group GL~3! of the corresponding direct product:
esen-
the last

s selected

metric
and the
. More-
vantage
~A1!

The dimensions of the GL~3! representations on the right-hand side are the following: 15 for the totally symmetric repr
tation, 15 for the next mixed symmetry representation, 6 for the following mixed symmetry representation, and 3 for
mixed symmetry representation. Therefore, we have 815151331512361333.

We intend to show the correspondence of the preceding tensorial representations with the tensorial representation
according to the symmetry relative to pairs of indices. These are constructed as direct product of representations:

~A2!

The corresponding dimensions are the following: 36 for the symmetric-symmetric, 18 for both the antisymmetric-sym
and the symmetric-antisymmetric, and 9 for the antisymmetric-antisymmetric. The symmetric-symmetric tensor
antisymmetric-antisymmetric tensor can be further resolved into pair-symmetric and pair-antisymmetric components
over, most of the six resulting representations are still reducible. To find the irreducible representations, we will take ad
of the Clebsch-Gordan decomposition given by Eq.~A1!, superimposing on it the symmetry relative to pairs of indices.

To have symmetry in the first pair, say, we may just symmetrize the general tensor~A1! over indicesi j . This operation
immediately removes the fourth, sixth, eighth, and ninth representations, which are antisymmetric ini j . In other words, given
that
0-9



e totally
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~A3!

we can resolve the general tensor~A1! into i j -symmetric andi j -antisymmetric parts. The former is

~A4!

where the right-hand side of the latter equation is the result of symmetrization over indicesi j ~unnecessary in the totally
symmetric representation!. The i j -antisymmetric part is more complicated but we will not need it.

We can further resolve Eq.~A4! by symmetrizing or antisymmetrizing over the remaining pair of indices:

~A5!

~A6!

Let us analyze Eq.~A5!. Using the definitions of the Young tableaux, we compute

,

~A7!

~A8!

If we denote the components of the tensor with symmetry by pairs@given by the left-hand side of Eq.~A5!# as

Si jmn5Ti jmn1Tjimn1Ti jnm1Tjinm , ~A9!

we can write Eq.~A7! as

15Si jmn8 5Si jmn2Smni j

and Eq.~A8! as

6Si jmn5Si jmn1Smni j2
1
2 @Sim jn1Sinm j1Sm jin1Sn jmi#,

where the left subscript indicates the dimension of the irreducible linear representations. On the other hand, th
symmetric representation reads

15Si jmn5Si jmn1Smni j1Sjmin1Sim jn1Sin jm1Sjnim . ~A10!

Now, let us analyze Eq.~A6!. We compute
056310-10
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~A11!

~A12!
i

ea

b

ir-

are

ta-
s

es.
ep-
-

l

o
our-

or,
d

If we denote the components of the tensor with symmetry
the first pair and antisymmetry in the second@given by the
left-hand side of Eq.~A6!# as

SAi jmn5Ti jmn1Tjimn2Ti jnm2Tjinm , ~A13!

we can write Eq.~A11! as

15SAi jmn5SAi jmn1 1
2 @SAim jn1SAinm j1SAm jin1SAn jmi#.

and Eq.~A12! as

3SAi jmn5SAi jmn2 1
2 @SAim jn1SAinm j1SAm jin1SAn jmi#.

In analogy with Eq.~A13!, we define

ASi jmn5Ti jmn2Tjimn1Ti jnm2Tjinm , ~A14!

and we have analogous definitions for the irreducible lin
representations15ASi jmn and 3ASi jmn .

We must also define the tensor with antisymmetry
pairs

Ai jmn5Ti jmn2Tjimn2Ti jnm1Tjinm , ~A15!

which can be divided into pair-symmetric and pa
antisymmetric tensors as
lui

ch
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6Ai jmn5Ai jmn1Amni j , ~A16!

3Ai jmn5Ai jmn2Amni j . ~A17!

Note that 6A exactly corresponds to the second squ
Young tableau of Eq.~A1!.

Of course, many of the preceding irreducible represen
tions of the group GL~3! are reducible with respect to it
rotation subgroup O~3!, since the metricd i j allows one to
extract lower-rank representations by contracting indic
For example, the totally symmetric tensor contains the r
resentationsJ54,2,0 @14#. The six-dimensional representa
tion given by 6S or 6A containJ52,0. The 15-dimensiona
representations given by15S8 or 15SAcontainJ53,2,1. The
irreducible representations of the group O~3! are the symmet-
ric traceless tensors@14#. Therefore, it must be possible t
express each of the previous representations in terms of f
rank tensors as symmetric traceless tensors~of lower rank!.
For example, for J53, from 15S8 we obtain Tl jn

5e l imSi jmn8 1e j imSilmn8 1enimSi jml8 ; for J53, from 15SA we
obtain Tpi j5epmnSAi jmn1e imnSAjpmn1e jmnSApimn . Note
that, in both cases, the components of theJ52 representa-
tions vanish and do not contribute to the third-rank tens
while the remainingJ51 representation must be remove
from this tensor by imposing that it be traceless.
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