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Anisotropy in homogeneous rotating turbulence
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The effective stress tensor of a homogeneous turbulent rotating fluid is anisotropic. This leads us to consider
the most general axisymmetric four-rank “viscosity tensor” for a Newtonian fluid and the new terms in the
turbulent effective force on large scales that arise from it, in addition to the microscopic viscous force. Some
of these terms involve couplings to vorticity and others are angular momentum nonconsarihegrotating
frame. Furthermore, we explore the constraints on the response function and the two-point velocity correlation
due to axisymmetry. Finally, we compare our viscosity tensor with other four-rank tensors defined in current
approaches to nonrotating anisotropic turbulence.
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[. INTRODUCTION involve accelerations, such as in a uniformly rotating fluid. A
homogeneous but anisotropic forcing will induce anisotropy
The properties and applications of rotating fluids consti-in the velocity field(the axial case is studied in R¢f]); but
tute an important area of fluid mechanidd. In particular, the physical origin of this anisotropic forcing and, therefore,
the anisotropy consequent to the rotation has been a vethe extent of the scale range affected by it are not clear. We
important subject. For example, we have the classicaihink that rotating turbulence is a more natural example of
Proudman-Taylor theorem, which says that, in the limit ofanisotropic turbulence and with more physical applications.
fast rotation, the flow is so strongly anisotropic that it actu-Moreover, this type of anisotropic turbulence has distinctive
ally becomes two dimensional. Turbulence in the presence Gbatures(as was pointed out in Ref5]) becauseQ is an
uniform rotation, which is called rotating turbulence, is an axia| vector. Indeed, the forc®x V2u or other terms of the
example of anisotropic turbulence and an area of active resgme type would not be allowed if isotropy were broken by
search{1-4]. _ , _ _ a polar vector as in Ref9].
From a theoretical point of view regarding symmetry, the We remark that the characterization of the effectioe

clas_sical theo_ry of fully developed turbulence assumes th%dd)b viscosity as a four-rank tensor has already appeared in
maximal possible symmetry, namely, symmetry under trans,

. . ; X . the literature. For example, in Régf7] the authors show that
lations and rotations, so it applies to idé@mlmogeneous and . : . .
. . ) . A a multiscale method applied to the Navier-Stokes equation
isotropic turbulence. However, in various situations such

high symmetry is not realistic and one must consider les inearized with respect .to a yveak Iargg—scale ﬂ.OW precisgly

symmetric turbulent states. The next most symmetric state i rodgces an effec_twe viscosity tensor if the basic fluctuating

still homogeneous but the isotropy reduces to axisymmetryOW IS not isotropic. However, as commented above, to de-

that is, the full rotation group reduces to the group of rota—t?rm'”e the form gf this tensor, one needs an epr|C|_t mecha-
tions around a particular axis. The archetype of homogeliSm that breaks isotropy and preserves homogeneity. Other-
neous turbulence with axisymmetry is rotating turbulenceVise, the basic assumptions and, in particular, axisymmetry,
(naturally, the symmetry axis is the rotation gxis are not justified.

It was shown in Ref[5] that perturbation theory for the On the other hand, sind® is an axial vector, the effective
randomly forced rotating Navier-Stokes equation generategiscosity tensor in rotating turbulence has distinctive fea-
anisotropic effective forces, in particular, thendissipative tures: for example, it has a pair-antisymmetric piéeséich
force QX V2u. This suggests that one should find the com-generates the above-mentioned fori@d. In addition, it will
plete set of allowed force terms. In this regard, it is useful tobe shown here that a general treatment of the effective vis-
define the effective viscosity, which is a tensorial function ofcosity tensor in rotating turbulence requires new terms that
Q (reproducing the known perturbative results for isotropiccouple to the vorticity or that are angular momentum non-
turbulence ad)2—0). Beyond perturbation theorfor any  conserving(in the rotating framgand, therefore, are forbid-
method of solution our intention here is to study from first den in anisotropic nonrotating turbulence.
principles the consequences of axisymmetry in rotating tur- We shall first review the fluid equations in the rotating
bulence. frame and the conditions for turbulence; we emphasize the

The possibility of anisotropy in the velocity correlation transition from small-scale isotropic turbulence to large-scale
functions has been considered before in nonrotating fluidanisotropic turbulence. Next, we introduce the viscosity in
[6—12. So, in these references, the anisotropy was attributethe standard manngf3] but without recourse to isotropy,
to other causes: existence of a mean flow or anisotropic foroahich is replaced by only axisymmetry. All the components
ing. In fact, in ahomogeneou8luid the existence of mean of the resulting four-rank tensor are determined with group
flow effects, that is, the dependence of properties of the flovtheory argumentfl4]. From this tensor we obtain the addi-
on its mean velocity, would contradict Galilean invariance.tional anisotropic force terms. Once seen the axisymmetry
The flow can only depend on global kinematical features thatonstraints on the viscosity tensor, we impose axisymmetry
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on the response function @wo-point velocity correlations. Homogeneous rotating turbulence
In particular, the large-scale response function is related with

the vi vt Finall v t t the vi i The homogeneous rotating turbulent state is defined by a
€ viscosity tensor. Finally, we iry to connect the viScosi yvelocity field with large fluctuations but such that the mean
tensor with other four-rank tensors introduced in some cur-

: - , velocity is negligible in the rotating frame. Let us see how to
rent approaches to nonrotating anisotropic turbulence. . . . . .
characterize this state in terms of nondimensional parameters

and how it is related with the homogeneous and isotropic
Il. EQUATIONS OF MOTION IN A ROTATING FRAME turbulent state.
AND TURBULENCE Since we have the rotation velocity as additional param-

The hydrodynamical equations for a fluid with density eter, we can define two nondimensional parameters, namely,
field p(x,t), velocity fieldu(x,t), pressurd(x,t) in aframe ~ the Reynolds and Rossby numbers. While the Reynolds
rotating with constant angular veloci§ are number Re=UL/v measures the relative importance of the

nonlinear and viscosity terms in the Navier-Stokes equation,
ap the Rossby number RoU/(L{)) measures the relative im-
5t TV (pu)=0, (1) portance of the nonlinear and Coriolis terms in the rotating
Navier-Stokes equation)( is a reference velocity or the
variation of the velocity over the length that characterizes
a—u+(u-V)u=— EVP—ZQXU—QX(QXX)-Ff ) the system size In principle, Re>1 indicates that rotation
at p ' effects are negligible and, vice versa, Rb indicates that
they are dominant. However, the latter condition, namely,
wheref accounts for an additional acceleration due to fric-dominance of rotation effects over nonlinear and viscous
tion (which vanishes i’;u=0) and a homogeneous and iso- (and even dynamjceffects leads to the situation in which
tropic external forcing, usually randorfor periodic as in  only the linear Coriolis force is relevant, giving rise to ex-
Ref. [7]), which serves for keeping the total kinetic energytreme two dimensionalization of the flowas in the
constant. Proudman-Taylor theorentut without turbulence. It is nec-

We assume that the fluid is incompressible, with constanéssary that théwo numbers Ro and Re play a role in speci-
density, so the continuity equation becon¥su=0. So if  fying the regime of interest, that is to say, the regime with
we definep=P/p every reference to the density disappearsyotation effects (Re-1) and turbulence (Re-1). Or one
and we have two equations for the two unknowrendp. To  may introduce the Ekman number €k/(QL?) (in addition
solve forp, it is useful to separate E@2) into independent to Ro), which is the ratio of the Rossby number to the Rey-
longitudinal and transverse equations. Singe u, +ut nolds number and measures the relative importance of the
(such thatVxXu,=V-ur=0) andu, identically vanishes, viscosity and Coriolis termgl]. Then one must demand Ek
the longitudinal equation becomes just a constraint relgiing <Ro in addition to Re<1.
with spatial derivatives ofi, namely, To clarify the preceding condition, let us consider relevant

length scales. First, let us recall the role of the dissipation
1 1 scale. In ordinary homogeneous and isotropic turbulence,
p= E(QX X)2— ﬁ[é’i(ujé’jui)-i- 26 Qjoiu].  (3) K4l theory[8_] makes the dissipation rate per unit magbe
basic quantity and introduces the dissipation scale
=(v%e)Y4 Using Q instead ofy, we can form withe the
Solving forp, the equation fou=ur is length scale¢ =(/Q3)Y2 If we begin with smallQ (for
fixed ) such that¢>L, rotation effects must be negligible
all over the fluid system of characteristic lengithTherefore,
the precise condition for neglectinf is Q<(e/L?)Y3
(equivalent to¢>L). Given that (/\)*3*=Re>1, the pa-
where the projection operat@ onto transverséor solenoi- ~ fameter €/L?) 1/3/92'1)/(9!_2)&/)\)4/3: EkRe=Ro, so the
da)) fields is given by condition for _ne_g[ectlngl is just Re>1. ASQ grows and,
therefore,f diminishes such that <L, rotation effects be-
come appreciable. We then have one scale range with rotat-
P=1— VLV. (5)  ing turbulence, namely, betwedhandL, and another with
2 isotropic turbulence, namely, betwe@nand ¢. The latter
range holds as long as<¢, that is, Q<\/e/v. As € be-

In Eq. (4), if u is transverse so isand vice versa. We call comes smaller thah, the rotation effects dominate over the
Eq. (4) the transverse rotating fluid equation. If we substitutenonlinear effects and the flow becomes strongly two dimen-
for f an isotropic viscous force, it becomes the transversesional.
rotating Navier-Stokes equation. Note that the transverse ro- The interesting values d&d are such that there are the two
tating fluid equation(4) is translation invariant(assuming scale ranges, respectively, with isotropic turbulence on small
that f is homogeneousin contrast with Eq(2). Therefore, scales and anisotropic turbulence on larger scales. Of course,
its solutions are homogeneous velocity fields and, furtherthis happens wheR<¢<L. Then the viscosity or correla-
more, one can make use of the Fourier transform. tion functions on scales betweanand{ are essentially iso-

‘;_‘t‘+p[(u.v)u]:—p(2(zXU)+f, 4
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tropic whereas the effective viscpsity or cqrrelation functions nﬁmn: a1( 8 Smnt SimSin+ SinSim) +A2(QQ;5mn
on scales betweef andL are axisymmetric.
+ Q006+ Qi Q060+ Q Q1 6in+ Qi Q0 6jm
Ill. THE AXISYMMETRIC EFFECTIVE VISCOSITY
TENSOR +QQ,6im) +a3Q{QQ 0 Qn+ 846 Smn

. . . . : + Qi Snt i)
To introduce the viscosity tensor, it is convenient to fol- 3s((i€; Omnt Qml2niy) (10

low the general reasoninig 3] which starts by writing the  tpere are five independent components, to which we attach

fluid equation in local conservative form as scalarsay, . . . as (which can depend of2?). In compari-
Ju Il son with the form given in Ref5], this expression has been
p_': _u ;= — pu;u; + T;; (6) arranged so that the three first tensdvath coefficients
at IX; ' g il v

a,,a,,a3) are totally symmetric in their indices.
The generic pair-antisymmetric tensor has 15 compo-
nents, constructed in the Appendix as the linear representa-
T . =—P& +o. 7) tion 15S’. The pair-antisymmetric tensor with axisymmetry
. v needs, in addition td); and &;, the totally antisymmetric
due to internal relative motiofviscosity from general prin-  tensore;y and is
ciples. The first principle is that the velocity gradient is

and finds the deviatoric part of the stress tensor

. ; ; 9 A
small, which allows one to consider orfiyst derivativesof Tijmn= P12 g(€GimOjn T+ €ginSjm+ €gjmSin T €qjnSim)
the velocity. Next, the viscous stress tensgqris taken pro-
. ! . ) . . + . ) + €. . + €. )
portional to the velocity gradient and, furthermore, its anti- P2(2q( €qim;nt €qin i m+ €gjmf2if2n
symme’;ric compo.nentevorticity) are excludeq, so that the + €4jn2iQm) +b3(Q21 Q5 — Q2 65). (11
stress is proportional to the rate of strain,,=dmun)
= (dun/IXm+ duy ! dx,)/2 (this characterizeblewtonian flu- We observe that the axisymmmetry has reduced the num-

ids) [15]. The following crucial assumption issotropy, ber of independent components from 21 to 5 for the pair-
which leads to the existence of only two proportionality con-symmetric part and from 15 to 3 for the pair-antisymmetric
stants(shear and bulk viscositiesAs we cannot make this part. This reduction can be explained by considering the re-
assumption here, we are left with just the proportionalityduction of linear tensor representations under rotatises
relation the Appendix and Ref10]). The reduction under rotations is
performed by extracting traces, which are rotation invariant
Tij = MijmnUmn> (8) but notlinear invariant. There exists a canonical procedure
for doing this trace extractiofl4] but we can clarify the

such as in the analogous rele_ltion in th.e theory of eIaStiCi%rocedure by noting that the properties of the expressions in
that expresses that the stress is proportional to the $tr@jn Eq. (10) or Eq.(11) under rotations are determined only by

Therefore, the symmetry properties of the tensffn,,  the vector(), (8 and € are rotation invariant For ex-

which we call the “viscosity tensor,” are similar to the ones ample, the terms with coefficients, and a, clearly corre-

of the elastic modulus tensor, namely, symmetry under exépond to scalarsJ=0), the only terms allowed by isotropy.

chinge o;(ljr}t(_jmes within tthe fwzt and sr(]acond p?'trﬁ 0;.'”?'Ceiurthermore, an expression with the tensor product &f's
and, In addition, Symmetry under exchange ot the first an orresponds to the representatiban, usually, with an ad-

second pairs of indicepair symmetry. However, we shall mixture of lowerJ representations. Therefore, each coeffi-

further allow forpa_|r annsymmetrynamely,_we WIte7ijmn  cient corresponds to a definiferepresentation, but, in order
as a sum of a pair-symmetri) and a pair-antisymmetric to obtain the correct tensorial expression of each representa-
(A) part[S5]: tion, we need to remove the lowdrrepresentations by ex-
tracting traces. This induces a linear redefinition of the coef-
ficients within each linear representation.
Finally, we remark that the terms in EGL1) with coeffi-
nfientsb; andb; would not be allowed if isotropy were bro-

; : : ken by a polar vector, because the respective terms would be
onents, of which 21 belong to the pair-symmetric p;ﬁ o . .
P 9 P Y hn odd under parityin general, the parity of the representation

and 15 be_long to the pair-antisymmetric p@ﬁmn . J associated with a polar vector is-§].
The axial symmetry of the equations of motion reduces

the number of independent components of baﬂ;ﬂn and
ﬂﬁmn- The 21 components of the generic pair-symmetric
tensor can be divided into two sets with 15 and 6 compo- The preceding tensorial expressions for the viscosity have
nents, respectively, the former corresponding to the totallya part that couples to the velocity divergenge. Moreover,
symmetric tensor. The respective components are corthey give rise to an isotropic part of the viscous stress tensor
structed in the Appendix as linear representations and calleg;; (that is, proportional ta5;). Therefore, the viscosity ten-
155 and ¢S. Further imposing axisymmetry, the pair- sors must be further decomposed into traceless and trace
symmetric tensor can be constructed fréimand ;; as parts. For incompressible flow we only need the traceless

__S A
Nijmn= %( Nijmnt 77mnij)+ %( Nijmn— 77mnij)= Nijmn T Dijmn -

So, generically, the viscosity tensor has 36 independent co

A. Traceless components and incompressibility constraint
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components such thak;j= 7wmn=0. They can be ex- rotating fluid, fail in a rotating frame. Therefore, we are al-
tracted by subtracting traces from eith@?jmn or ﬂﬁmn- In  lowed to consider viscosity tensors with antisymmetric pairs
the general case, that is, with no axiat any othey symme-  of indices. We have three type€) tensorsy;jm, with the
try, those tracelessness conditions remove66-1=11 first pair symmetric and the second antisymmetric, which
componentgthe conditionz,,,, =0 appears twide leaving  account for an angular momentum conserving coupling to
25 components. To be more precise, the conditigfg,  Vorticity, (i) the symmetric type;mn, that is, tensors with
=0 remove six components Ofﬁmn (with J=2,0, corre- the first pair antisymmetric and the second symmetric, Wh!Ch
sponding t0gS) and the conditions;ﬁkk=0 remove the five ~account for an ar]_gular momentum nonconserving .couplmg
components Ofr]ﬁmn corresponding td=2. to strain rate, andiii ) tensorsjjm, with both pairs antisym-

Indeed, a straightforward calculation yields metric, Wh'Ch. account _fo_r an angular momentum noncon-

serving coupling to vorticity.

The most general tensor with the first pair symmetric and
the second antisymmetric has 18 compondeéee the Ap-
=a1(8imOjn+ SinOjm— 5 8 Smn) + 2 Qi QnSin pendiX. Its axisymmetric form is

S 1_S 1_S 1_S
7]ijmn_577ijkk5mn_§7fkkmn5ij+§77kklléi15mn

+QQndin+ Qi Gjm+ QQn8im— 5(2iQ0mn Xijmn= (€18;j + €20 Q) €mnfd + C3(Qi Q1 Sjn + Qi Qi

+Qan5ij ) + 3925” 5mn] + aS[QinQan _QiQn‘Sjm_Qan5im) + C4( eianj + ejani)'
=301 8t QQ08ij) + 5048 Sl (14)
(12) .
The constants,,c5,C, correspond td=1,2,3, respectively,
nﬁmn_%nﬁkkémn_%nﬁ\kmnﬁij forming the linear representat_ioggSA whereasc, corre-
sponds taJ=1 and 3SA Imposing that the tensor be trace-
=b1Q4(€gimjn T €qinSjmT €qjmSin T €gjnSim) less in its first two indices, that is;;,,=0, relates the co-

efficientsc, andc, (the tensor is automatically traceless in
20 €qim2; 2T €qin€2; 2m T €qjmi 2y the second pair of indicesTherefore, the traceless tensor
+ €qjn Q). (13) contains thel=1,2,3 representations, corresponding to the
Clebsh-Gordan decomposition of the tensor product of the
The number of coefficients has been reduced to three fa}=2 andJ=1 representations.
Wﬁmn , corresponding to thé=4,2,0 representations, and to  There is an analogous axisymmetric structure for the sym-
two for #fj,,, corresponding ta)=3,1. It is natural that metric type&ijmn, involving 1;AS and 3AS, and with coef-

they together constitute the Clebsh-Gordan decomposition dicientscy, ... c;.
the tensor product of twd=2 representationgvith dimen- Finally, the tensot;;,, with both pairs antisymmetric has
sion 5xX5=25) [14]. nine components, which the axisymmetry reduces to

There is another set of tracelessness conditions, namely,
7ijmj=0, but there is no physical reason to impose them. Cijmn=01(8imin— 8inSim) + dao( Qi Qn8in— Q Qi
However, note that the six conditionﬁsjmj:o remove the
J=2,0 representations, just leavinp=4, while the three —0iQ06im+ QQn6im) + d3(€imn ) — €jmntli).
conditions nﬁmjzo remove theJ=1 representation, just (15)
leavingJ=3. Therefore, this last set of tracelessness condi-
tions would select the highedtrepresentations, correspond- 11,4 constantsd, ,d,

. - correspond toJ=0,2, respectively,
ing to the coefficients; andb,.

forming the representatiogA (which is pair symmetrig
_ _ _ _ S whereadd; corresponds td=1 and ;A (which is pair anti-
B. Viscosity tensors with antisymmetric pairs symmetric: even though it may not seem obviogs,n(2;

Two crucial assumptions in the reasoning at the be-~ €jmn{i =~ €mij{ln+t €njj{dm). The tensor defined by Eq.
ginnning of Sec. IIl are that the viscous stress tensor is symL) is trivially traceless in both pairs of indices and corre-
metric and that it does not depend on the vortiitye vor- sponds to the Clebsh-Gordan _decomposmon of the tensor
thlty tensor iSa)ij :&[in] = (&in — &Ju,)/Z] They lead to a prOdUCt of twoJ=1 representatlons'
viscosity tensor with symmetry under exchange of indices
within the first and second pairs of indicésymmetry by C. Effective forces associated with the viscosity tensor
pairg. Those two assumptions are commonly accepted since . . . )
they are based on basic physical principles: on the one hand, 1he total viscosity tensor= 7+ y+ &+ is defined by
the stress tensor can always be chosen symmetric because of
angular momentum conservation; on the other hand, a uni-
form rotation(leading to a constant vorticitycannot induce . ) .
stresses, so a dependence of the stress tensor on vorticity i§€ force derived from this stress tensor is
forbidden. However, both principles, namely, angular mo-
mentum conservation and absence of stresses in uniformly fi =00 19X;= TijmndjmUn - a7

0ij = TijmndmUn - (16)
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The expression that results by substituting the full axisymwhere we have assumed that the velocity vanishes on the

metric expression of;;,, is fairly complicated: suppressing boundary to remove the surface integrals, that is, we have
gradient terms, we obtain assumed that there is no work made by external sources.
As remarked in Ref[5], »* does not lead to dissipation;
neither does/”. Moreover, if Xijmn=&mnij, the respective
f=(a;—d;)V2u—by(QXV2U)—b,y(Q- V)3(Q2xu) terms cancel in Eq(19). All these nondissipative compo-

, nents of - do not properly belong to thgiscositytensor,
= (b C) (- V)(R2XV)(Q-u) + (b + o) (L V) although they give rise to forces with dynamical effect. On

X(Q- @)+ (CatChtds)(Q- V)t (ay—cs+ci—d,  the other hand, since the dissipation cannot be negative, we
can deduce some positivity conditions on the proper coeffi-
X QV2(Q-u)+(a,+c3—c5—d,)(Q-V)2u cients of the viscosity tensoa; >0, —d;>0, etc.
2
T80 (Q-V)A(Q-u). (18 IV. AXISYMMETRIC FORM OF THE RESPONSE

FUNCTION AND VELOCITY CORRELATIONS

Several remarks are in order. Note that the fifth and sixth |t is useful to study the symmetry constraints on the re-
terms of the force involve the vorticityo=V Xu and are  sponse function and velocity correlations. Here we determine
proportional to an odd power of). The terms preceding the most general axisymmetric forms of these quantities in
them are also proportional to an odd powelbf except the the small-wave-number limitcorresponding to large-scale
first one, which is isotropic. The remaining three anisotropicfeatureg. The theory of axisymmetric tensors has been the
terms, which neither involve the vorticity nor any vector subject of previous analyses of anisotropic turbulence; in
product, are equivalent to the anisotropic force written inparticular, it has been treated in papers by Chandrasé¢g&har
Ref.[9]. If we had considered only the tensgF to derive  and by Aradet al.[10]. The former uses the old formalism of
the force, we would have obtained precisely these threénvariant theory whereas the latter uses the theory of group
terms but the first couple of them would have had the sameepresentations. Unfortunately, both consider only the appli-
coefficienta,. As we use the complete tenserwe have cation to correlation functions in real space, while we are
instead that some coefficients are redundant: inspecting Einterested here in correlation functions in Fourier space
(18), we see that there are two redundant coefficients amongpectral functions Therefore, the theory of axisymmetric
C4,C;,d3, two redundant coefficients amoray,cs,c3,d,, tensors as is developed in those references must be adapted
and one redundant coefficient amoag,d;. to Fourier space. Actually, the spectral two-point velocity
After taking into account tha¥-u=0 and suppressing correlation function in rotating turbulence has already been
gradient terms, only remain the coefficients of the partof studied by Cambon and Jacqui?] and we shall use their
that is traceless in the first and second pair of indices. Graresults.
dient terms are longitudinal and the physical force must be
transversgsolenoidal; but, after removing these terms, the A. Axisymmetric form of rank-two tensors
force is still nontransverse and must be projected with the
nonlocal operatofP of Eq. (5). This operation brings back
two suppressed gradient terms, namé®({2- w)=0 and
VI(Q-V)(Q-u)], in addition to producing nonlocal gradi-

We consider a second-rank tensor that depends on the
wave vectok (since we use Fourier spac@n addition to the
angular velocity€2. The general form of such a tensor as a
linear combination of the tensorial produdtsk;, Q;(;,

ent terms. : )
Finally, we remark that all the terms in E(L8) coming ki€2;, ikj and the unit tensob; is

from odd<J components of, that is, the ones with odd pow- Tij(k)=Akik; +BQ;Q;+ CkQ;+C'Qik+Eg; ,

ers of Q (with coefficientshb,, b,, c,, ¢;, ¢4, c;, andds), (20)

would not be allowed if isotropy were broken by a polar

vector. where A,B,C,C’ ,E are arbitrary functions ok, , and

k- Q. However, a more general expression results upon in-
troducing the unit antisymmetric tensor or, equivalently, the
D. Dissipation vectorn=kx € (assuming thak and{2 are not parallgland

The dissipated power is the corresponding tensor products:

- d3xu-f=—f d3xu-a-a-:f d3xd;u; o
f R R +D,nikj+F,nin+Gninj. (21)
:f dgxuijnijmnumn+j dsxuinijmn‘Umn This expression with nine cqeff|C|ents_ is the most general
one, because any vect(p be included in a tensor product

can be expressed as a linear combinatiok,of2, andn.
—f d3Xwij§ijmnumn—f d*Xwi; Sijmn@mn» We remark that expressio{20) corresponds to the ordi-
nary quadratic form of Ref6], where the terms with the unit
(19 antisymmetric tensor are hamed “skew” forms. This name
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G, Mk w)(uj(k,w))=fi(kw), 25)

employed in the tensor products of the ordinary quadratic

form are polar, this form is parity invarianeven parity,
whereas the skew forms change sign under reflectiodd

which tells us, on account of E¢L7), that the quadratic term
in the expansion oGi]l(k,O) in powers ofk is related with

parity) since the vector product is axial. In our case, wethe viscosity tensor. To be precise, we have that
begin with a polar vectok and anaxial vector 2, so their
vector productn is polar. Hence, the terms of ER1) that
change sign under reflections are the ones with only@ne
Instead of the basis formed by Q, andn, it may be
more convenient to use an orthonormal basis. Any couple ofiefining what we call théfour-rank response tensor. This
linearly independent vectors determine an orthonormal basisensor has symmetry in the pairn, so it has 54 independent
in particular, the two vectork and € lead to the one given components, whiler (in the generic cagehas 81 compo-

1 9°G;*
gijmn::_i&kmﬁkn ) OZE(Timjn"'Tinjm)y

(26)

by k/k, eéV=kx Q/|kx Q|, ande@=kx eb/|kx el [2].
Note that the vectof is axial, soet) is polar butel® is
axial. Interchanging the role d? andk, we get a different
orthonormal basis, with the vecto#" in common: €
=0/Q, et=kxQ/|kxQ|=¢eb, and €=Qxe"/|Qxel.

This basis(which we denote by superindices without paren-

theses is more adequate. Note that bathande? are polar.

Any rank-two tensor can be expressed in the latter basi

as

Tij=Tpqele]. (22)

There are three pieces M, that are independent under ro-
tations: the trace, the antisymmetric part, and the tracele
symmetric part. This is the Clebsch-Gordan decomposition
of the vector tensor product into the irreducible representa- Mjmin) 2= Gjimn -
tionsJ=0, J=1, andJ=2 of the rotation group. However,

nents. Indeed, the 27 components of the ten%()rimjn
— Tinjm) do not contribute to the response function.

1. Mapping the viscosity tensor to the response tensor

We can take in Eq(26) 7,x,¢& or ¢ for 7. On the other
hand, gijmn can be decomposed intg-symmetric and
g—antisymmetric parts, corresponding to the respective parts

the response matrix. Therefoi®;,, has 6<6=36 com-
ponents with symmetry in both pairf®elonging to theS
representationand 3x 6=18 components with antisymme-
try in the first pair and symmetry in the second péielong-
ing to the AS representation

Let us first analyze the components @f coming
fom 7% We note thatgijmn=(7imjn* 7injm)/2= (7jim
Furthermore, this tensor is pair
gmnij:(niinj'l' ﬂ%jm)/ZZ(mSmjﬁ 7ijsmin)/2

Vs
symmetric:

S S H .
to classify the behavior of the components of the second= (Zimjnt 7injm)/2=Gijmn - SO the 21 pair-symmetric com-

rank tensor under rotations arouf that is, under the two-
dimensional rotation subgroup(®) of the full rotation group
0O(3), it is best to use the given bas{mponents'T'pq). The
irreducible one-dimensional representations )@re com-
plex, labeled by an integevl (—J<M<J). The real irre-
ducible representations are labeled [by| and are two di-
mensional(except the scalav =0 representation 14]. We
have thate® is a scalar, ande!,e?} form the real|M|=1
representation. Consequently; is the scalaM =0 repre-
sentation T3, T2, T21, 132 belong to two|M|=1 represen-
tations, and the remaining components in the 22 block
matrix can be subdivided into its trac®E0), its antisym-

ponents ofy> (representationssS and ¢S) are transformed

by Eq.(26) into the 21 pair-symmetric components @fin
particular, the totally symmetric representatigy® of 7S is

left invariant. Given that we can substitut® by ¢° in the
preceding equations, we conclude that the six pair-symmetric
components ot (zA) are transformed by Ed26) into six
pair-symmetric components gf(linear combinations 0fsS

and gS).

We also note that if we takg for 7 in Eq. (26) and
symmetrize inij, the tensom;j,,= le(Ximjn+Xinjm+ijin
+ Xjnim) IS pair antisymmetric, owing to the symmetry pf
An analogous property is fulfilled by the tensgf,,, con-
structed in the same way frog So the 15 components gf

metric part M=0), and its traceless symmetric part from ,.SAor the 15 components af from ;;AS are trans-

(IM|=2). Furthermore, it is not difficult to ascribe eabh
representation to a definiterepresentation.

B. Axisymmetric form of the response function
The response function is defined by

&ui(k,w))

3fi(ko) |, @3

Gjj(k,w)=

(introducing a nonrandom part in the external forcfiigSo
we can write, at linear order if

(Ui(k,0))=G;jj(k,0)fj(k,w). (24)

Conversely,

formed by Eq.(26) into the 15 pair-antisymmetric compo-
nents ofg (representationsS’). On the other hand, it can be
proved thaty or £ belonging to representationSAor ;AS,
respectively, yield vanishing (they contribute instead to
Timjn— 7'injm)-

As regards thej-antisymmetric part ofjj;,,, note that
Gijmn= (nﬁmjn'l' 7'/ibr\ﬂm)/z: (— 77jAnim_ 7/,-Amm)/2: ~Gjimn- SO
the 15 components of* (representation;sS’) are trans-
formed by Eq.(26) into 15 components ofjjm, With anti-
symmetry inij (;5AS). Given that we can substitutg® by
™ in the preceding equations, the remaining three compo-
nents of” (3A) are transformed into three components of
gijmn forming the representatiogAS. Finally, we also have
the mapping SA—AS given by gijmn:%(Ximjn'l'Xinjm
— Xjmin— Xjnim) @nd a similar mappin\S—AS.
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2. Axisymmetric form of the response tensor versality implies thatkZ; =k;;=0. So, in the isotropic

The preceding mapping has been established with fulfase, the spectral two—point velocity correlation is given in
generality, without considering any particular spatial symmelerms of only one function:
try. If we take axisymmetry into account, E(6) provides B
the linear relations between the coefficients in the axisym- Uij(.K) =P (KU w,k). (28)
metric form ofg;;m, and the coefficients in the axisymmetric Taking into account that equal-time correlations are more
forms of , x, £ or {. The 54 components @f;;,, belong to useful. let us define
the S and AS representations, thereforg;;,, has 8+4 ’

=12 coefficients: the axisymmetric form of the components dw
Jijmn With symmetry in the first pair is like the forms of in Ui (k)= f > ti(w.K) (29)
Egs.(10) and(11), with other coefficients, sag,, . .. ,as,

B1,B2,B3; the axisymmetric form of the componerdgn,  (assuming that the integral is convergersp that
with antisymmetry in the first pair is like the form &f with
other coefficients, say;, .. .,ya. Uik tuj (K", 1))y = (27)4; (k) 3(k+K'). (30)

The above-mentioned coefficients in the response tensor ] ) )
can also be obtained by expanding in powerkdhe axi- AS demonstrated in Sec. IV A, the general axisymmetric
symmetric expression dﬁﬂl (21). Considering that the unit rank-two tensor has nine independent coefficient functions,

antisymmetric tensor does not appear in the tensors with cd2ut the transversality conditions reduce their number. The
efficients e, . . . ,@s, Ba, vs the corresponding part of number of independent conditions is five, so just four coef-

Gij* is given just by expressio0). Then the coefiients Z 20 LI et TR o T erse vectors

ai, ....as, B3, Y3 must arise by expandir_lg,B,C,C’,E e(l)p d (29) It ) ptt the basi di

in powers ofk such that the total expression is of second ander. 1t1s convenient 1o use the basis corrésponding
: : 2 2 to circular polarizationdN=eM—je) N*=¢eb+ie? so

degree ink. In particular, B=Bk“+B,(k- Q)¢ and E that th lting t b 'tt, 3 ’

— E,k?+ E,(k- ©)?, while Ais a constant and the coefficient - ot (1€ FESUling tensor can be wri en(as

functions of the terms that are of first degreekinnamely, K

(_Z,C', can only be expandeq up to thg firgt ordpropor- U (k) =e(k)P; + R z(K)N;N;1+ih(K) € _'2 (32)

tional to k- ). Therefore, this expansion just doubles the k

coefficients of(;(); and &;;, producing seven coefficients N o

altogether. We can divide them between the six coefficientd he quantitiese(k) and h(k) are the energy and helicity

arising from the symmetriG(_ijl) (C=C’) and the one cor- spectrum, andz(k) is a “complex deviator.” They all are

responding to the antisymmetr@[f-l] namely,C—C’ even functions ok. The preceding form is equivalent to the

] 1 .

; . 4 . i (1)a(2) N
The part ofG: * that includes the unit antisymmetric ten- fOrM Wwith the productse; 'e;~’, on account thatN,N$
. ) , , . :e(l)e(l)_e(z)e(z)_|(e.(1)e(2)+e(2)e(1)) ’P :e.(l)e(j'
sor, with coefficientd,D’,F,F’, andG in Eg. (21), corre- by dy ) R e TR
sponds t0B1,8,v1,¥2 andy,. They can be divided into 1€ 7€, andej; ki /k=e;"e;” —e;"'e;™.

BB, for the symmetricG(‘ijl) and y,,7v,, and y, for the Velocity correlations for more than two points lend them-
antisymmetrioG[_ijl]. \?ve(ggs to be expressed in similar though more complicated

3. Higher-rank axisymmetric response tensors
V. CONNECTION WITH SOME APPROACHES TO

An expansion osgl in powers ofk to orders higher than ANISOTROPIC TURBULENCE
the quadratic order yields response tensors similgy;tq, in
Eq. (26) but of higher rank. Given thab;;* must be parity
symmetric, only even powers @&f can appear. For example,
the next higher-rank response tenggf,npq is symmetric in
the last four indices and, therefore, has $5=135 compo-
nents, but this number is reduced by the axisymmetry. Th
following higher-rank response tensors are progressivel
more complex, of course.

We have already mentioned that fourth-rank tensors asso-
ciated with anisotropic turbulengbut without rotation have
been studied before; for example, in Rgf]. More recently,
in Ref.[11] one fourth-rank tensor for a flow with a constant
gtrain rate has been defined. Another fourth-rank tensor is

efined in Ref[12] in connection with the linearization of a

losure equation in the presence of weak anisotropy. We now
explore connections between our anisotropic viscosity tensor
and those tensors.
C. Axisymmetric form of the two-point velocity correlation The fourth-rank tensoCj;m,(k) of Ref. [11] expresses
proportionality between the contribution to the correlation
U;; (k) [defined in Eq(29)] from anisotropy and the constant
strain rate producing the anisotropy:

Let us introduce the spectral two-point velocity correla-
tion

. . ! ! — 47/ ! '
(Ui(k,©) Uj(K ")) = (2m) U (0,K) 80+ @ )é\“’<k+k(2>7.) 24,0~y (K, @)

where the strain rate,,, is constant. The Reynolds stress
We have thatf;j(w,k) =U;;(— w,—k). Furthermore, trans- tensor
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DU (x.t f w-u, (33 5D (= omt D 8 (K) (37)
<U (X, )U X, )> IJ( )= ij mn (Sz/[”(k) T 1] !

has a deviatoric part that, according to E82), is propor- wheredéD,, represents an anisotropic perturbation of an iso-
tional to the strain rate, the proportionality constant being theropic forcing such thab ,,= D P, [note that isotropy im-

integral of the tenso€;;m,n(Kk): plies thatl/; =eP;;, according to Eq(31)]. The solution of
this linear equation is obtained by inverting the matrix of
d3k d3k pairs of indices, deriving a sort of tensorial response func-
ij_f |]( k)= f —3Cijmn(k)umn- tion,
(2m)* (27)
(349 Uy (K)
. . |Jmn(k D=0 SD ) (39
It is also possible to assume that the Reynolds stress tensor

Dmn=DPnn

(33) and the strain rate have some mild dependence on the

spatial coordinatet. The corresponding generalization of Eq. which measures the response to the anisotropic perturbation.
(34) is a phenomenologicdimean-field closure relation that Considering the role of the molecular kinematic viscosity
can be justified with a multiscale method applied to thein Eq. (36), we can tentatively define a kinematic viscosity
Navier-Stokes equation linearized with respect to thetensor as
x-dependent(large-scalg mean flow [7]. Comparing this )
mean-field relation with Eq(8), we deduce a relation be- " :_1 J fd3qG-_-l (K, )| (39)
tween our viscosity tensopijm, and Cijma(k), namely, Hme 2 0k ok, fjmni A k=0

3 This relation between a tensorial viscosity and a response
Tijmn f ———Cijmn(K). (35)  tensor is an alternative to E(6), valid when we replace the
(2m)? original Navier-Stokes equation with the closure E86).

) However, the actual computation a)fjmn necessarily leads

We must note, however, that the form@fi,,(k) interms of o an isotropic tensor, since there is nothing in B3p) ca-
projectors;; (k) proposed in Ref[11] leads to the usual pable of breaking rotation invariance.
isotropic #;jmn. Indeed, one needs an additional quantity,
such as the vectd2, to define an anisotropic viscosity. VI. CONCLUSIONS

More sophisticated closure schemes involve relations be-
tween the three and two-point velocity correlation functions. We have applied symmetry principles to homogeneous
The Navier-Stokes equation leads to an equation involvingurbulence subjected to uniform rotation, focusing on the
these two types of correlations, first derived by vorrigan ~ four-rank tensor defining the linear relation between the
and Howarth assuming isotropy. ChandraseKi@rdevel-  stress tensor and the velocity derivatives, which we call the
oped a theory of axisymmetric tensors to generalize thigiscosity tensor. The most general tensor comprises five
equation to axisymmetric turbulence. As remarked by Frisciparts.
[8], it is easy to derive a fully anisotropic version of the (8) A tensor »° symmetric by pairs of indices and pair
Karman-Howarth equation, which he calls the tg@en-  Symmetric, accounting for the usual proportionality relation
Howarth-Monin equation. In Ref12], the Fourier transform between thE(aHISOUOPI() stress and the strain rate.
of this equation is used as the basis of a closure scheme (b) A tensorz”* symmetric by pairs and pair antisymmet-
related with the direct interaction approximation, in which ric embodying a new relation between the stress and the
the functionz4; (k) satisfies(in stationary conditionsa non- strain rate, typical of rotating fluids, since it does not lead to

linear equation: dissipation.
(c) A tensory symmetric in the first pair of indices and
D mn(K) =1 mn(K) — vK2Umn(K), (36) antisymmetric in the second, which accounts for a stress ten-
sor coupling to vorticity.
wherel ,,, is an integral operator quadratic 4; . In addi- (d) A tensor & antisymmetric in the first pair of indices

tion, we have introduced an external random forcing, abserdnd symmetric in the second, which accounts for the anti-

in Ref.[12], which is Gaussiaandwhite in time and, hence, symmetric part of the stress tengangular momentum non-

is represented by the spectral two-point correlaip, (k) conserving that couples to the strain rate.

(see Ref[8] for a general description of closure equatipns (e) A tensor { antisymmetric in both pairs of indices

If the molecular viscosity vanishes, the external forcing is which accounts for the antisymmetric part of the stress tensor

not necessary, as in Rdfl2]. However, the introduction of that couples to the vorticity. This tensor can be further de-

D, allows us to substitute the four-rank tensor defined incomposed into pair-symmetric and pair-antisymmetric parts,

Ref.[12] by a four-rank tensor more useful to connect with like 7.

the viscosity tensor. Group theory helps us to find the linearly independent
If the forcing is isotropic, we expect that E36) has componentgas representations of the linear group each

isotropic solutions. One can then linearize this equatiorpart. Every part adopts a particular axisymmetric form,

around an isotropic solution, namely, which can be deduced from the examination of the decom-
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position of the linearly independent components under rotacan be connected. However, the lack of specification of a
tions. quantity that breaks rotation invariance precludes that the
This variety of components of the viscosity tensor is re-actual values of the tensors corresponding to nonrotating tur-
flected in the various effective forces that arise from thembulence can be anisotropic. It is possible, nevertheless, to
Some of these are longitudinal, that is, they are the gradiergrovide such a symmetry-breaking quantity: for example, an
of a potential, and therefore do not contribute to the transanisotropic noise spectral correlatiby,,. In particular, one
verse rotating fluid equation. However, they arise from thecan introduce an axisymmetri2,,, by postulating the pres-
turbulent state and contribute to the equation that determinesnce of a global vectofof unknown origir), as in the per-
the equilibrium state, so they may have practical relevanceurbative approach of Ref9]. If this symmetry-breaking
Already at first order in(), we have the potentiaQ)- w, vector were axial instead of polar, the four-rank tensgy,
which reminds us of the spin-orbit coupling of atomic phys-of Sec. V should have the same form that agif,, .
ics. At higher orders if), we find more complicated poten-
tials.

Although the most general four-rank viscosity tensor in-
cludes terms that lead to the stress coupling to vorticity and | thank C. Molina-Pas for conversations. My work was
not conserving angular momentum, one may wonder if theysupported by a Ranmoy Cajal contract and by Grant No.
are really necessary. If we take the criterion of having theBFM2002-01014, both of the Ministerio de Ciencia y Tec-
most general axisymmetrizansverseforce, we could re- nologa.
move redundant coefficients in EEL8): this equation has
nine terms but includes the 14 coefficients of the traceless
viscosity tensor. For example, we could remove all the coef-
ficients belonging ta/, and the couples,c, (belonging to
x) or the couplec;,c, (belonging to&), but notc, or c;.
Hence, we conclude that the only part of the viscosity tensor Let us work out first the resolution of the general four-
that can be neglected i§ but y andé must be present. So rank tensofT;;,, into a sum of tensors of definite symmetry
we still have that the stress couples to vorticity and does ndlype given by standard Young tableaux. Young tableaux in-
conserve angular momentugim the rotating framg dicate certain symmetry operations performed on the indices

Finally, in our analysis of the four-rank tensors defined in[14]. We can consider the general four-rank tensor as a ten-
some approaches to nonrotating anisotropic turbulence, weorial product of four vectors and, therefore, write its reso-
have seen there are similarities with our viscosity tensor idution as the Clebsch-Gordan decomposition for the linear
their definition and, therefore, that the respective definitiongroup GL(3) of the corresponding direct product:
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APPENDIX: RESOLUTION OF THE GENERAL
FOUR-RANK TENSOR BY THE SYMMETRY OF PAIRS
OF INDICES

De@eome n= Eme (M [Me [le e [[He
il [ ) (A1)
m @ 7 @é
w 7]

The dimensions of the GB) representations on the right-hand side are the following: 15 for the totally symmetric represen-
tation, 15 for the next mixed symmetry representation, 6 for the following mixed symmetry representation, and 3 for the last
mixed symmetry representation. Therefore, we have B3+ 3X15+2X6+3X3.

We intend to show the correspondence of the preceding tensorial representations with the tensorial representations selectec
according to the symmetry relative to pairs of indices. These are constructed as direct product of representations:

- ] - 77 ) )
me wm, [He mm, mme ], He @ (2)

The corresponding dimensions are the following: 36 for the symmetric-symmetric, 18 for both the antisymmetric-symmetric
and the symmetric-antisymmetric, and 9 for the antisymmetric-antisymmetric. The symmetric-symmetric tensor and the
antisymmetric-antisymmetric tensor can be further resolved into pair-symmetric and pair-antisymmetric components. More-
over, most of the six resulting representations are still reducible. To find the irreducible representations, we will take advantage
of the Clebsch-Gordan decomposition given by El), superimposing on it the symmetry relative to pairs of indices.

To have symmetry in the first pair, say, we may just symmetrize the general tgfsoover indicesij. This operation
immediately removes the fourth, sixth, eighth, and ninth representations, which are antisymni¢trio iother words, given
that
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De@= cme [, *3

we can resolve the general tengédl) into ij -symmetric andj -antisymmetric parts. The former is

e Me @M= Gimme | [H1Me [t1nlg L
ut

Sk

(SIS

(i5)

where the right-hand side of the latter equation is the result of symmetrization over imgdiG@snecessary in the totally
symmetric representatignTheij-antisymmetric part is more complicated but we will not need it.
We can further resolve EqA4) by symmetrizing or antisymmetrizing over the remaining pair of indices:

[ile® mnl= Ghmne | Gy 2 ® | pid , (A5)
(i7),(mn) (i5),(mn)
- m] _ 7 217ln 12
G ® _ E7m+ m7| | ® m]l (6)
= (1.7):[”7’"'] "7:"—
(43),[mn)
Let us analyze EqA5). Using the definitions of the Young tableaux, we compute
7’% / hnl + 7% 7]71‘ = ’Tijmn + T'jimn + T‘ijnm + ,I‘jinm - Tmnij - Tmnji - Tnmij - Tnmji,
- (i7),(mn) (A7)
7%771 = dijmn + ’I_'fimn + T;Zjnm + ,I_‘jinm + Tmm'j + Tmnji + Tnmij + Tnmji
(i3),(mn) 1
=+ E ["ijin - Tmijn - T:imin - 4imjn T ijm' - Tminj - nmni - T;mnj
_T‘inmj - T}nmi - Tm’mj = dnjmi T T;njm - T_'jnim - Tm‘jm - Tnjim] . (A8)
If we denote the components of the tensor with symmetry by pgiven by the left-hand side of EGA5)] as
Sijmn:-I-ijmn'iijimn"'Tijnm"”Tjinmv (A9)

we can write Eq(A7) as
155jmn= Sijmn— Sinij
and Eq.(A8) as
6Smn= SijmnT Smnij— 2[ Simjn+ Sinmj T Smjin+ Sajmil,

where the left subscript indicates the dimension of the irreducible linear representations. On the other hand, the totally
symmetric representation reads

15Sijmn: Sijmn+ Smnij+ Sjmin+ Simjn+ Sinjm+ Sjnim . (AlO)

Now, let us analyze EqA6). We compute
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7?1, 2tm) + 7;7/ 11n) = ﬂjmn + T_'jimn - ,I:L'jnm - ’I’jinm
(43),[mn]
1
+ 5 [_,-rinjm - ’I‘imnj - T_‘jnim - Tjjmm' - ijm' - Tminj - Tnjim - Tm'jm
+ T;nmj + CZ’imjn + 7ﬂjnmi + T_‘ﬂmn + Tmijn + ijin + Tnimj + Tnjmi] )
(A11)
7’7{,‘ 1 - 71ijmn + 71jimn - njnm - nznm
m
(1), [mn]
1
+ 5 [Trjni + Tming + Tnjim + Tnijm — Tmjin — Tmijn — Tnjmi — Tnimj
(A12)
+ ,-ijni + T;Zmnj + Tjjm'm + T'injm - ,Ijjmin - ,-rz'mjn - /Tjnmi - T;,nm]] .
|

If we denot_e the components of_the tensor wi_th symmetry in 6Aimn=Aijmn+ Amnij (A16)

the first pair and antisymmetry in the secdmiven by the

left-hand side of Eq(A6)] as 3Aijmn=Aijmn~ Amnij - (A17)

SA =T +T. —Ti —To | A13 Note that ;A exactly corresponds to the second square
Ajmn jmn Jjimn jnm Jjinm ( ) Young tableau Of Eq(Al)
we can write Eq(A11) as Of course, many of the preceding irreducible representa-

tions of the group GI3) are reducible with respect to its
158SAjmn=SAjmnT 3[SAmjn+ SAnmjt SAnjinT SAnjmil- rotation subgroup (3), since the metric3; allows one to

extract lower-rank representations by contracting indices.
and Eq.(A12) as For example, the totally symmetric tensor contains the rep-

 _gpA 1 . ) N o resentations)=4,2,0 [14]. The six-dimensional representa-
35Aimn=SAjmn = 215 Amin SAnmj + SAnjin+ S Ayjmil tion given by ¢S or A containJ=2,0. The 15-dimensional
In analogy with Eq.(A13), we define representations given byS' or ;sSAcontainJ=3,2,1. The
irreducible representations of the grou@Dare the symmet-

ASjmn=Tijmn= Tjimn T Tijnm ™ Tjinm (A14)  ric traceless tensorgl4]. Therefore, it must be possible to

express each of the previous representations in terms of four-
fank tensors as symmetric traceless tengofdower rank.

For example, forJ=3, from 58 we obtain T,

= Elimsi,jmn"' EjimS|,Imn+ enimS,jml ; for J=3, from ;sSAwe
Obtaln Tpij = EpmnSAﬂjmn+ eimnSAﬁpmn+ EjmnSApimn . Note

Aijmn=Tijmn— Tiimn— Tijam+ Tjinm (A15) that, in bpth cases, the components of mez'representa—
tions vanish and do not contribute to the third-rank tensor,

which can be divided into pair-symmetric and pair- while the remainingdl=1 representation must be removed

and we have analogous definitions for the irreducible lineal
representationgsASmn and sAS;m, -

We must also define the tensor with antisymmetry by
pairs

antisymmetric tensors as from this tensor by imposing that it be traceless.
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